El propósito general de este libro es ser una guía para que el lector interesado en trabajar con Redes Neuronales Artificiales, (RNA) esté en capacidad de solucionar problemas propios de su disciplina usando esta técnica de la Inteligencia Computacional. La estructura del libro se concibe desde los tipos de aprendizaje, ya que es la característica más importante que poseen las redes neuronales artificiales y en ella radica su principal fortaleza para solucionar y adaptarse a diversos problemas. En este libro se encuentran contenidos teóricos básicos que lo dejarán preparado para afrontar el estudio de libros y artículos de carácter avanzado, acompañado de problemas resueltos que afianzan el saber y el saber hacer.
El primer capítulo presenta una breve revisión histórica de la evolución de las RNA con el fin de mostrar los principales desarrollos científicos que han enriquecido este apasionante campo del saber. Se introduce el modelo artificial de una neurona inspirado en el funcionamiento de la neurona biológica y a partir de este modelo artificial, se hace una revisión de las arquitecturas monocapa, multicapa y recurrente de las redes neuronales artificiales, así como de los procesos de aprendizaje supervisado y no supervisado.
En el capítulo dos, se estudian las redes neuronales tipo Perceptron y Adaline, las arquitecturas, los principales algoritmos de aprendizaje y su aplicabilidad. Es importante detenerse en las limitaciones inherentes al Perceptron con el fin de visualizar la introducción de estructuras de red más complejas y que las superen. Como en todos los capítulos siguientes, el libro propone una aproximación práctica para solucionar problemas usando MATLAB y UV-SRNA, siendo esta última una herramienta desarrollada en la Universidad del Valle.
De las limitaciones observadas en el Perceptron, relacionadas fundamentalmente con su imposibilidad para solucionar problemas no lineales, surgen el Perceptron Multicapa (MlP) y el algoritmo de Backpropagation, temas que son ampliamente discutidos en el capítulo tres. El modelo de Hopfield es un buen ejemplo de red neuronal dinámica, cuyo estudio se plantea en el capítulo cuatro, a partir de las memorias asociativas y autoasociativas, para luego proponer el Modelo Discreto de Hopfield, a través de su procedimiento de aprendizaje y principio de funcionamiento, se continua con el Modelo Continuo de Hopfield para finalizar con la aproximación practica donde veremos paso a paso como se construye y simula en MATLAB este tipo de red.
En el capítulo cinco se presentan los Mapas Auto-organizados de Kohonen como un ejemplo representativo del aprendizaje no supervisado de las redes neuronales artificiales. En las aplicaciones prácticas se enfatiza en la capacidad que tiene esta red para auto-organizarse dependiendo de la estructura de los datos que se utilicen para su entrenamiento, con el fin de mostrar su aplicabilidad en el campo del reconocimiento y clasificación de patrones.
CONTENIDO
Introducción
Capítulo 1
Generalidades sobre redes neuronales artificiales
Capítulo 2
Redes neuronales perceptron y adaline
Capítulo 3
Perceptron multicapa y algoritmo backpropagation
Capítulo 4
Red neuronal de hopfield
Capítulo 5
Mapas auto-organizados de kohonen
Capítulo 6
Red neuronal de base radial (RBF)
Proyectos propuestos
Bibliografía